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Abstract

In this paper, we present a three-dimensional Poisson equation solver for the electrostatic potential of a charged b
large longitudinal to transverse aspect ratio in a straightand a bent conducting pipe with open-end boundary condition
this solver, we have used a Hermite–Gaussian series to represent the longitudinal spatial dependence of the cha
and the electric potential. Using the Hermite–Gaussian approximation, the original three-dimensional Poisson equ
been reduced into a group of coupled two-dimensional partial differential equations with the coupling strength prop
to the inverse square of the longitudinal-to-transverse aspect ratio. For a large aspect ratio, the coupling is weak. T
dimensional partial differential equations can be solved independently using an iterative approach. The iterations
quickly due to the large aspect ratio of the beam. For a transverse round conducting pipe, the two-dimensional Poisson
is solved using a Bessel function approximation and a Fourier function approximation. The three-dimensional Poiss
can have important applications in the study of the space-chargeeffects in the high intensity proton storage ring accelerato
induction linear accelerator for heavy ion fusion where the ratio of bunch length to the transverse size is large.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solving the three-dimensional (3D) Poisson equation for the electrostatic potential of a charged lon
bunch in a conducting pipe has important applicationsin beam dynamics studies ofmodern accelerator physic
Recently, there has been increasing interest in utilizing high intensity beams for future accelerator applicatio
e.g., accelerator-driven spallation neutron source (SNS), and Fermilab booster accelerator upgrade. In th
applications, the nonlinear space-chargeforces from the charged particle interactions can cause particle loss, whi
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results in the radioactivation of the accelerators. To minimize particle losses, self-consistent particle-in-cell (PIC
models have been developed to simulate charged particle motion in the accelerators[1–3]. These models includ
both the space-charge forces from the beam and the forcesfrom complex external fields. To calculate the space
charge forces, we must solve the Poisson equation for a given charge density distribution. A key issue in
simulations is to solve the Poisson equation efficiently, at each time step, subject to the appropriate boun
conditions. In many applications, the computation of the electrostatic potential of a long bunch beam i
conducting pipe with open-ends is of particular importance.

In previous studies, a number of methods for solving Poisson’s equation in a closed computational dom
been studied[4–8]. To use these methods for solving the Poisson equation in a conducing pipe with op
boundary conditions requires a large computation domain so that the potential vanishes at the ends of the doma
This is inefficient for beam dynamics studies, since only the potential inside the beam is needed. Furth
the choice of computational domain is not straightforward and usually requires solving Poisson’s equation twic
ensure that the computational domain is large enough. An efficient method has been proposed in our previ
using a boundary matching procedure[9]. However, that method used a finite difference scheme for the longitu
discretization. For a long bunch with very large longitudinal to transverse aspect ratio, e.g.,> 100, the use of a finite
difference method in the longitudinal direction is computationally efficient. For example, in the SNS accelerator, t
beam has a longitudinal size of order of 100 meters while the transverse size of the beam is only a few cen
Putting a computational mesh on such a beam would requirea large number of grid points longitudinally in order to
get sufficient resolution. On the other hand, the spectral function approximation can have a much higher accur
than the finite difference approximation. The open boundaryconditions that the electric potential disappears
infinite distance leads to a natural choice of the Hermite–Gaussian function as a basis function. After appro
the longitudinal dependence of the electric potential and the charge density distribution using a Hermite–G
series, we obtain a group of coupled two-dimensional (2D) partial differential equations (PDEs). Solvin
coupled two-dimensional PDEs presents the same challenge as the original 3D Poisson equation. Fortunately
a beam with large aspect ratio, the coupling strength of these two-dimensional PDEs is proportional to the
square of the aspect ratio. This suggests that for a beam with a large aspect ratio, the coupling between i
2D PDEs for each longitudinal mode is weak. We have used an iterative approach and treated the coupling term
as source terms. This reduces the original 3D Poisson equation to a group of 2D Poisson equations. The
converges very quickly due to the weak coupling resulting from a large aspect ratio. The resulting two-dime
Poisson equations are solved using a Bessel function and a Fourier function approximation in a transver
conducting pipe. For a charged beam bunch in a bent conducting pipe, e.g., in storage ring accelerator, we h
written the 3D Poisson equation in Frenet–Serret coordinates. The contribution from the curved struc
a multiplier proportional to the ratio of pipe transversesize to the curvature radius. For most accelerators
curvature radius varying from 1 to 1000 meters, this ratio would be of order 10−2 to 10−5. Again this term can be
treated as a perturbative source termin the above iterative approach and the iteration converges quickly.

The organization of this paper is as follows: The physical model and numerical methods are desc
Section 2. The numerical tests of the 3D Poisson solver are presented inSection 3. The conclusions are draw
in Section 4.

2. Numerical methods

We first discuss the solution of the 3D Poisson equation in a straight conducting pipe. For a pipe with
cross-section, we write the dimensionless Poisson equation in cylindrical coordinates as:

(1)
∂2φ

∂r2 + 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂θ2 + ∂2φ

∂z2 = −ρ.
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Here,φ denotes the dimensionless electrostatic potential,ρ the dimensionless charge density function,r andz the
dimensionless radial and longitudinal distance. The boundary conditions for the potential are:

(2)φ(r = 1, θ, z) = 0,

(3)φ(r, θ + 2π, z) = φ(r, θ, z),

(4)φ(r, θ, z = ±∞) = 0.

Here, we have chosen the radial pipe radiusa as the length scale so that the radial boundary condition is s
r = 1. The charge densityρ and electrostatic potentialφ can be approximated using a Hermite–Gaussian s
along thez-axis so that the longitudinal boundary conditions inEq. (4)are naturally satisfied.

(5)ρ(r, θ, z) =
N∑

n=0

ρn(r, θ)Hn(z),

(6)φ(r, θ, z) =
N∑

n=0

φn(r, θ)Hn(z).

The scaled Hermite–Gaussian functionHn is defined as

(7)Hn(z) = Hn

(
z

A

)
exp

(
−1

2

z2

A2

)

whereA is the dimensionless longitudinal scaling constant, which is the longitudinal to transverse aspe
A = σz/a with σz the longitudinal beam rms size,Hn is the nth order Hermite polynomial with propertie
H0(z) = 1, H1(z) = 2z, . . . , Hn(z) = 2zHn−1 − 2(n − 1)Hn−2. The scaled Hermite–Gaussian functionH has
the properties:

(8)

∞∫
−∞

Hn(z)Hm(z)dz = 2nn!√π Aδnm,

(9)
∂2Hn

∂z2
= 1

4A2
Hn+2 + n(n − 1)

A2
Hn−2 − 2n + 1

2A2
Hn

whereδmn = 1 for m = n andδmn = 0 for m �= n. The expansion coefficientsρn andφn can be obtained from

(10)ρn(r, θ) = 1

2nn!√π A

∞∫
−∞

ρ(r, θ, z)Hn(z)dz,

(11)φn(r, θ) = 1

2nn!√π A

∞∫
−∞

φ(r, θ, z)Hn(z)dz.

Substituting the functionsρ andφ into the 3D Poissonequation (1), and using the orthogonality of the scal
Hermite–Gaussian functions andEq. (9), the 3D Poisson equation is reduced to a group of coupled 2D PDEs
each equation satisfying

(12)∇2⊥φn +
(

1

4
φn−2 − 1

2
(2n + 1)φn + (n + 2)(n + 1)φn+2

)
1

A2 = −ρn

where∇2⊥ is the transverse Laplace operator

∇2⊥ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.
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Eq. (12)is a group of coupled two-dimensional partial differential equations. Each longitudinal moden is coupled
to the moden − 2 andn + 2 with a coupling multiplier 1/A2. For a large longitudinal to transverse aspect ratioA,
the coupling between different modes is weak. The contributions from the coupling modes in the seco
of Eq. (12)can be treated as a perturbative source term using aniterative approach. The detailed procedure is
follows:

(13)∇2⊥φ1
n = −ρn,

(14)∇2⊥φ2
n = −ρn −

(
1

4
φ1

n−2 − 1

2
(2n + 1)φ1

n + (n + 2)(n + 1)φ1
n+2

)
1

A2 ,

(15)∇2⊥φ3
n = −ρn −

(
1

4
φ2

n−2 − 1

2
(2n + 1)φ2

n + (n + 2)(n + 1)φ2
n+2

)
1

A2 ,

... = ....

Here, the superscript of the electric potentialφ denotes the iteration number. For a large aspect ratioA, theφn will
converge to the solution ofEq. (12)within a few iterations.

During each iteration, we need to solve a two-dimensional Poisson equation with the updated source te
The periodic boundary condition for the potential along theθ direction suggests the use of a complex expone
eigenfunction in that direction. A Bessel function is an appropriate eigenfunction in the radial direction for a rou
conducting pipe. Hence, we can approximate the potentialφ and source termρ as follows,

(16)ρn(r, θ) =
Nm/2−1∑

m=−Nm/2

Nl∑
l=1

ρlm
n Jm(γlmr)exp(−imθ),

(17)φn(r, θ) =
Nm/2−1∑

m=−Nm/2

Nl∑
l=1

φlm
n Jm(γlmr)exp(−imθ)

whereγlm is a solution of

(18)Jm(γlm) = 0.

Theρlm
n andφlm

n are determined from

(19)ρlm
n = 1

πJ ′2
m (γlm)

2π∫
0

1∫
0

ρn(r, θ)exp(imθ)rJm(γlmr)dr dθ,

(20)φlm
n = 1

πJ ′2
m (γlm)

2π∫
0

1∫
0

φn(r, θ)exp(imθ)rJm(γlmr)dr dθ.

For the first iteration, multiplyingEq. (13)by exp(imθ)rJm(γlmr) and integrating from 0 to 2π and from 0 to 1,
we obtain

(21)φlm
n = ρlm

n /γ 2
lm.

A similar expansion can be applied to the next iterations except that the source terms in the two-dime
Poisson equation include the contributions from the charge density functions and from the electric po
calculated in the last iteration.

For the charged beam in a bent conducting pipe, the electrical potential will have the same boundary conditio
as that in the straight pipe except that in this case the longitudinal coordinate is related to the arc leng
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Fig. 1. A schematic plot of the charged particles inside a bent pipe.

the bend. A schematic plot of the charged particles inside a bent conducting pipe is shown inFig. 1. The bending
radiusR is large compared with the transverse pipe radiusa. The bunch length of the charged particles is a
significantly larger than the pipe radius. Using Frenet–Serret coordinates, the dimensionless 3D Poisson
can be rewritten as

(22)∇2⊥φ + 1

R

1

1+ r cos(θ)
R

(
cos(θ)

∂φ

∂r
− sin(θ)

r

∂φ

∂r

)
+ 1(

1+ r cos(θ)
R

)2

∂2φ

∂z2
= −ρ.

Here,R = R0/a is the normalized curvature radius withR0 the physical curvature radius. Approximating t
electric potentialφ and charge densityρ in the longitudinal direction by the scaled Hermit–Gaussian series
obtain for each moden a group of coupled two-dimensional partial equations similar toEqs. (13)–(15):

∇2⊥φn + 1

R

1

1+ r cos(θ)
R

(
cos(θ)

∂φn

∂r
− sin(θ)

r

∂φn

∂r

)

(23)+ 1(
1+ r cos(θ)

R

)2

(
1

4
φn−2 − 1

2
(2n + 1)φn + (n + 2)(n + 1)φn+2

)
1

A2 = −ρn.

These equations can be solved using an iterative procedure:

(24)∇2⊥φ1
n = −ρn,

∇2⊥φ2
n = −ρn − 1

R

1

1+ r cos(θ)
R

(
cos(θ)

∂φ1
n

∂r
− sin(θ)

r

∂φ1
n

∂r

)

(25)+
(

1

4
φ1

n−2 − 1

2
(2n + 1)φ1

n + (n + 2)(n + 1)φ1
n+2

)
1(

1+ r cos(θ)
R

)2

1

A2
,

∇2⊥φ3
n = −ρn − 1

R

1

1+ r cos(θ)
R

(
cos(θ)

∂φ2
n

∂r
− sin(θ)

r

∂φ2
n

∂r

)

(26)+
(

1

4
φ2

n−2 − 1

2
(2n + 1)φ2

n + (n + 2)(n + 1)φ2
n+2

)
1(

1+ r cos(θ)
R

)2

1

A2
,

... = ....

Now there are two parameters, 1/R and 1/A2, affecting the convergence of the iteration. For most high inten
storage ring accelerators, the physical curvature is of order 100 meters while the transverse pipe radius is a
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several centimeters. This leads toR in the range of 1000–10 000. For a long bunch which normally occup
fraction of the ring, the above iteration for each mode will converge quickly.

3. Numerical tests

The numerical algorithms discussed in the preceding section are tested using a Gaussian charge distribution in
round conducting pipe. The Gaussian distribution closely approximates the charged particle distribution o
in real accelerator operation. For the convenience of comparison with the Green function solution in a straig
conducting pipe, we assume that the beam is axisymmetric. The charge density function is given as

(27)ρ(r, z) =
{

exp
(−1

2

(
r2

0.12 + z2

A2

))
, r < 1

0.0, r � 1.

Here, the beam has a normalized transverse rms size 0.1 and a normalized longitudinal rms sizeA. In a straight
conducting pipe, the analytical solution for the axisymmetrical Poisson equation using a Green function m
given by

(28)φ(r, z) = 1

aε0

∞∑
n=1

J0(βnr)

αnJ
2
1 (αn)

+∞∫
−∞

∞∫
0

J0(βnrs)exp
(−βn|z − zs |

)
ρ(rs, zs)rs drs dzs

whereJ0(αn) = 0 andβna = αn [10].
To see the effects of the longitudinal-to-transverse aspect ratio on the convergence of the coupl

dimensional Poisson’s equations, we have given inFig. 2 the iteration error as a function of iteration numb
for aspect ratioA = 2,10,100,1000 using the charge distribution inEq. (27). Here the iteration error at stepi
is defined asEri = ∑N

n=0 |φi
n(r, z) − φi−1

n (r, z)| with initial φ0
n = 0.0, where| | denotes the norm 1 of a matri

We see that with increase of the aspect ratio, the iteration has converged rapidly. For even a moderate aspect
A = 10, it takes less than 10 iterations to reach an iteration error 10−10. In this test, the longitudinal mode numb
for the scaled Hermite–Gaussian series is 10. The longitudinal mode number required for the solution of th
example depends on the size of aspect ratioA. Fig. 3shows the normalized electric potential as a function ofz on
the axis from the numerical solution with maximum longitudinal mode number 2, 6, and 10, for aspect ratioA = 2
(left) andA = 10 (right). In this figure, we also show the solutionfrom the analytical Greenfunction calculation for
comparison. We see that for small aspect ratioA = 2, as the Hermite–Gaussian mode number increases from

Fig. 2. The norm 1 errors as a function of iteration number for aspect ratioA = 2,10,100,1000.
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Fig. 3. The normalized electric potential as a function ofz on the axis with Hermite–Gaussian mode number 2, 6, and 10 for aspect ratioA = 2
(left) and 10 (right).

Fig. 4. The normalized electric potential as a function ofz at r = 0, 0.25, 0.5, and 0.75, and as a function ofr (right) atz = 0 and 1.875A with
A = 10 together with the Green function solution.

10, the numerical solutions gradually approach the Green function solution. For aspect ratioA = 10, the numerica
solutions from all three maximum mode numbers are in excellent agreement with the Green function solu
Fig. 4, we give a comparison of the numerical solutions and the Green function solutions as a function ofz (left) at
r = 0, 0.25, 0.5, and 0.75, and as a function ofr (right) atz = 0 and 1.875A with A = 10 in the above example
We see that the two approaches agree very well at all locations. However, the Green function approach is m
slower than the numerical method which we proposed here.

The numerical algorithm for a long bunch in the bent conducting pipe has also been tested using the G
charge distribution given inEq. (27). Fig. 5 shows the iteration error as a function of iteration number for
normalized curvature radiusR = 2, 5, 10, and 100. The longitudinal-to-transverse aspect ratio is 10 in this
with maximum longitudinal Hermite–Gaussian mode number 10. As the curvature radius increases, the
converges quickly. Comparing withFig. 2, we see that the convergence with increasing curvature radius is n
fast as that with increasing aspect ratioA. This is because that the contributions from the curvature term in th
preceding iteration scale as 1/R for a fixed aspect ratio in the bent pipe while contributions from the coup
term scale as 1/A2 in the straight conducting pipe.Fig. 6gives the numerical solutions of the normalized elec
potential as a function ofz (left) at r = 0.5 and as a function ofr (right) on the axis forR = 2, 5, 10, 100 in a
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Fig. 5. The norm 1 errors as a function of iteration number for the normalized curvature radiusR = 2, 5, 10, and 100.

Fig. 6. The numerical solutions of the normalized electric potential as a function ofz (left) at r = 0.5 and as a function ofr (right) on axis for
R = 2,5,10,100 in a bent conducting pipe together with the solutions from a straight pipe.

bent conducting pipe together with the solutions for a straight pipe. We see that as the curvature radius in
the numerical solutions in the bent conducting pipe gradually approach those in the straight pipe. ForR = 100 in a
bent pipe, there is little difference between the two solutions. This suggests that for large curvature radius as
in most store ring accelerators, the effect of the curvature is very weak in the solution of the 3D Poisson equa

4. Conclusions

In this paper, we have presented a three-dimensional Poisson solver for the electrostatic potential of a
beam in a straight and a bent conducting pipe with open-end boundary conditions. Using a Hermite–Gaussian se
to represent the longitudinal dependence of the electric potential and charge density distribution, the origin
dimensional Poisson equation is reduced to a group of coupled two-dimensional PDEs. With large longitudin
to-transverse aspect ratio, the coupling is weak. The resulting two-dimensional PDEs can be solved indep
using an iterative approach, which converges rapidly (within a couple of iterations). The same iterative pr
is also used to solve the three-dimensional Poisson equation in a bent conducting pipe. The rate of conve
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this case depends on both the bunch aspect ratio and the normalized curvature radius. For the physical ap
in most accelerators, both the aspect ratio and the normalized curvature radius are large enough to guarantee
convergence of the iteration. In the solution of the two-dimensional Poisson equation, we have used a Be
function approximation and a Fourier function approximation for the round conducting cross-section. In gene
the same Hermite–Gaussian approximation followed by an iterative procedure can also be applied to so
three-dimensional Poisson equation subject toother type of transverse boundary conditions.
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